Designing and evaluating a clustering system for organizing and integrating patient drug outcomes in personal health messages

Yunliang Jiang, MS1,2, Qingzi Vera Liao, MS1, Qian Cheng, BS1,2, Richard B. Berlin, MD3, Bruce R. Schatz, PhD1,2,3
1Department of Computer Science; 2Institute for Genomic Biology; 3Department of Medical Information Science. University of Illinois at Urbana-Champaign, IL, 61801

Abstract

Patient outcomes to drugs vary, but physicians currently have little data about individual responses. We designed a comprehensive system to organize and integrate patient outcomes utilizing semantic analysis, which groups large collections of personal comments into a series of topics. A prototype implementation was built to extract situational evidences by filtering and digesting user comments provided by patients. Our methods do not require extensive training or dictionaries, while categorizing comments based on expert opinions from standard source, or patient-specified categories. This system has been tested with sample health messages from our unique dataset from Yahoo! Groups, containing 12M personal messages from 27K public groups in Health and Wellness. We have performed an extensive evaluation of the clustering results with medical students. Evaluated results show high quality of labeled clustering, promising an effective automatic system for discovering patient outcomes from large volumes of health information.

Introduction

Online discussions now play an essential role in people’s lives. When a person plans to buy an electronic product, she would like to view other customers’ reviews from shopping websites. When a person considers trading on some specific stock, she would like to know other traders’ comments from stock discussion board. Web forums in specific area provide valuable information in support of users’ product judgment by exposing them to others’ recent experiences. Though subjective, they reflect comprehensive first hand opinions from actual people using actual products.

When it comes to the area of healthcare, the situation is similar: online bulletin boards and chat groups, such as Yahoo! Groups1 and WebMD2, offer patients and physicians a good platform to discuss health problems, e.g., diseases and drugs, diagnoses and treatments. These online user discussions also provide rich material for textual analysis to extract patient outcomes related to drug regimes for individual persons. Such analysis could enable physicians to know the side effects of particular drugs, and patients to better know the experiences of similar patients, related to whether the drug is effective, under what conditions.

Online medical discussions have limitations hindering users’ effective knowledge of information. If a user searches for a specific drug, there are usually thousands of comments or reviews returned, many of which are useless. The user often has difficulty in digesting and understanding the information quickly – she has to select the useful posts from the pool and read each one by one. Therefore, the outcomes need to be organized and integrated in a targeted fashion. To address such problem, we propose a prototype system for digesting health messages.

Unlike product reviews, medical discussion messages are unstructured, i.e., each comment talks about several topics in one piece of plain text. These messages must be partitioned into parts, and these parts must be grouped together according to what topic category they each belong to. By doing this we will have a coherent view on different aspects of the medical issue based on all the information available from our source. Our purpose is to re-construct and integrate a large number of unstructured online messages, into meaningful groups according to the topics, in order to aid users navigate through the vast information pool and satisfy their information need.

We designed a prototype model for clustering patient outcomes by effectively digesting large volumes of personal health messages. First, the useful user comments are retained, while news and advertisements which are noise for our purpose, are filtered out by an Support Vector Machine (SVM)-based classifier. In the main step, similar topics are grouped from sentences appearing in different messages by Probabilistic Latent Semantic Analysis (PLSA) topic model, where the topic categories can be guided by standard outcome descriptions from expert sources. In addition to identifying the sentences which are similar to(agree with) expert opinion into the corresponding topic, the model also clusters the sentences which are opposite to(disagree with) expert opinion into the same topic. In other words, for each outcome provided by experts, the system automatically identifies the sentences which provide positive support for the expert opinion and those provide negative support. The process organizes and integrates all the messages from online medical discussions in a practical way, relevant to particular persons in particular situations.

We have implemented a prototype interactive system for text mining of health messages. This system has been tested with sample messages from our unique dataset from Yahoo! Groups, which contains 12M personal messages from 27K public groups in Health and Wellness. This outcome research utilizes deeper processing of natural language, such as SVM and PLSA, than our previous studies on drug reactions with the same dataset[1,2]. Our methods do not require

1http://groups.yahoo.com/
2http://www.webmd.com/
extensive training nor dictionaries. In addition, they allow users to specify their own topics for digesting. Therefore, our methods provide general and powerful solutions to mine health messages.

We have evaluated the prototype system with a sample set of drugs using a sample cohort of medical students. 5000 sentences relevant to 10 representative drugs were randomly selected, and automatically clustered into topics extracted from PubMed Health database, a well known expert source for drug information. The accuracy of these clustering results was evaluated by medical students in the College of Medicine at the University of Illinois in Urbana. By comparing the automatically generated clustering results to the ones generated by these professional annotators, it is shown that our topic clustering methods produce highly accurate results. We also statistically prove that all judges were consistent in classifying the sentences and thus have produced a valid gold standard for our evaluation.

Guided by the standard expert opinions extracted from PubMed Health, our topic clustering provides robust automatic classification of patient-reported drug outcomes. That is, our system can automatically classify patient outcomes, which describe patients’ experience and result of using a particular drug, often using layman language, into standard categories derived from PubMed Health, with high accuracy. Drugs used for our evaluation can be divided into two classes: specialized and generalized. The first class treats a particular medical condition (e.g., Metformin), while the second class includes over-the-counter drugs (e.g., Ibuprofen) and commonly-prescribed-drugs (e.g., Heparin). The results show the accuracy of clustering specialized drugs is higher than that of generalized drugs. This is reasonable since specialized drugs often have a focused range of treatments and side effects, which makes patients’ outcome description more specific and consistent.

In summary, our outcomes system is accurate for clustering standard outcomes and effective for discovering novel outcomes, while fully automatic with text processing. Thus by using this system as the core engine, a national surveillance system is feasible to automatically extract drug outcomes from patient messages.

Related Work

Many applications have utilized formal medical literature to extract useful information, such as generating text summaries and topic modeling. We instead use informal medical messages which are generated by large numbers of online users. Compared with the formal literature, our dataset from web posted personal medical messages is more unstructured and noisy, which challenges the information extraction.

Instead of formal and structured literature, some research papers apply natural language processing techniques on unstructured clinical notes, such as abbreviation analysis and social-history information detection. Compared with these, our dataset from personal medical messages is more informal and contains more noisy information, which challenges the text processing. Meanwhile, the topic diversity of our dataset reflects various responses and opinions from various physicians and patients, which are rare in clinical notes.

There have been only a few studies using informal medical sources: Crain et al. worked on consumer medical search by using Yahoo! Answer messages, while Yang et al. did a solid query log analysis based on the Electronic Medical Record Search Engine (EMERSE). We have published several papers based on Yahoo! Groups messages, such as tracking users’ sentiments and predicting adverse drug events. Using the same dataset, we perform a comprehensive information extraction task and apply a series of text mining techniques to extract patient outcomes.

Recently semantic clustering represents a more effective approach for reorganizing texts in support of human understanding. For example, Lin and Demner-Fushman proposed a hierarchical agglomerative algorithm to cluster Medline abstracts. Similar to their work, we try to cluster sentences of message into meaningful clusters, but in a much finer-grained way. Therefore, advanced clustering approach like topic model will be considered.

Topic models such as Probabilistic Latent Semantic Analysis (PLSA) and Latent Dirichlet Allocation (LDA) have been applied to text mining problems with good results. Lu et al. applied PLSA model to integrate product aspects from online product reviews, while Kandulaweb et al. utilized LDA model to discover diabetic-related medical materials. In the above work, limited evaluations upon a small number of manual post-labeling were performed. After performing a semi-supervised PLSA model, our work performs a comprehensive evaluation strategy to evaluate the effectiveness of the model, based upon gold standard values produced by medical professionals.

To the best of our knowledge, our work is the first to integrate and analyze patient drug outcomes from online personal health messages, with a comprehensive evaluation framework.

3http://www.nlm.nih.gov/pubmedhealth/
Problem Definition

For one particular drug, we collect all the related health messages from Yahoo! Groups, denoted as M, in which N is the set of all the news, C is the set of all the user comments (our target), and S is the set of all the spam such as advertisements. Clearly, we have $M = N \cup C \cup S$.

After successfully extracting C, we split it into a set of meaningful sentences, denoted as D. Each sentence $d \in D$ is called a comment unit, which would potentially present one side of outcomes. Our target goal is to group all the comments into m meaningful outcome clusters O_1, O_2, \ldots, O_m, given the collection D.

Here are several key concepts to be introduced:

- **Expert comment e_i**: To better cluster the outcomes, semi-supervised PLSA model\(^{[11]}\) is applied. Expert comments aim to offer the prior knowledge for PLSA and guide the topic of each O_i. For each O_i, we have one expert comment e_i. Compared with the user comments, the expert comments are more well-written, professional and semantically discriminative to each other. We collect the set of expert comments E (formed by $e_1, e_2, \ldots, e_{m-1}$) for each drug, from the PubMed Health database of U.S. National Library of Medicine, Drug and Supplement Category\(^4\), which includes the detailed description of each drug. The reason why we choose $m - 1$ expert comments is that we want to create some groups of opinions with prior expert knowledge $(O_1, O_2, \ldots, O_{m-1})$ as well as another group of opinions whose topics are beyond the expert’s (O_m).

- **Similar opinion $O_{i, \text{sim}}$ and Opposite opinion $O_{i, \text{opp}}$**: Each outcome $O_i (1 \leq i \leq m - 1)$ consists of a group of comment units D_i and is associated with one expert comment e_i. Some of the comments represent similar or relevant opinion with e_i, which form $O_{i, \text{sim}}$. Others reflect different or opposite opinions from e_i, though they still talk about the same topic. We call such collection $O_{i, \text{opp}}$.

System Architecture

Figure 1 illustrates the whole design and implementation process of our system.

Messages from Yahoo! Groups are firstly organized by drug and then classified into three categories: N, C, S. N and S are eliminated while the the collection of comment units (D) is extracted from user comments (C), together with the expert comments (E) as input. On the one hand, such comment units (D) will be re-organized and integrated into several meaningful outcomes O_1, O_2, \ldots, O_m by our topic model, and presented to audiences via our system interface. On the other hand, judges will annotate the extracted data $(D$ and $E)$. Their annotation results will become a gold standard to evaluate the performance of our model. In the following sections we will introduce the key components of our system in details.

Methodology

As we introduced before, there are several steps to complete the whole task.

Data Pre-processing (step 1): The input is the collection M. We will separate it into three categories: News (N), Comment (C) and Spam (S). C is our target while N, S will be filtered out. C is then split into a set of comment units D.

Data Clustering (step 2): Given D and $m - 1$ expert comments $e_1, e_2, \ldots, e_{m-1}$, we will generate m outcome clusters O_1, O_2, \ldots, O_m. Each cluster O_i refers to one meaningful drug outcome, either guided by expert opinion $e_i (1 \leq i \leq m - 1)$, or contributing to “other opinions” ($i = m$).

Data Post-processing (step 3): For each cluster with prior expert knowledge O_i, we will split it into $O_{i, \text{sim}}$ expressing the similar opinion to e_i, as well as $O_{i, \text{opp}}$, which shows the opposite opinion.

A. Pre-processing: Filtering the messages

After extensively observing the messages on this online forum, we find that there are three types of messages:

- **News (N)**: The content of a news article is mainly about the FDA approval or scientific discovery of drugs. It is usually so long that useful information is difficult to extract. Therefore we will eliminate this group of messages.

- **User comment (C)**: User comments are the most informative part in the whole collection M. They are of proper length and provide good amount of useful information. This group of messages is our target.

\(^4\)http://www.nlm.nih.gov/pubmedhealth/drugs_and_supplements/
Table 1: Three Types of Messages

<table>
<thead>
<tr>
<th>Type</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spam (S)</td>
<td>Most advertisements[^{15}], posted by human or robots, should be eliminated for our purpose. They are often short, and appear repeatedly, which makes it easy to identify them automatically.</td>
</tr>
<tr>
<td>News (N)</td>
<td>FDA officials could not maintain their iron grip in an effort to suppress evidence of far reaching lethal effects of Vioxx when their actions were in full public view. FDA officials were forced to lift the roadblocks they had put in Dr. David Graham’s way...</td>
</tr>
<tr>
<td>User Comment</td>
<td>Taking Aspirin gives me bloodshot looking eyes (just enough to look horrible) yet I forgot to take it for 2 days and my eyes were very clear and bright. I don’t want to take aspirin either but my family has a strong history of heart attacks and migraine with aura...</td>
</tr>
<tr>
<td>Spam (S)</td>
<td>Everything is 70% off for this week only! Get for mens health Buy Valium for CHEAP Get Xanax for Anti Anxiety Buy Meridia online for weight loss...</td>
</tr>
</tbody>
</table>

\[^{15}\]For the space limit, other formulas can be seen in http://www.ideals.illinois.edu/bitstream/handle/2142/24194/Jiang,Yunliang.pdf
C. Post-processing: Separating similar and opposite opinions

Now in each cluster O_i, there are a couple of assigned comment units D_i. For the cluster which has a prior expert comment, we will split it into Similar opinion $O_{i, sim}$ and Opposite opinion $O_{i, opp}$, by applying semi-supervised PLSA model (creating two clusters with e_i as one $O_{i, sim}$’s prior knowledge while $O_{i, opp}$ has no prior knowledge).

To create such two clusters, the straightforward approach is to build one cluster’s prior estimator $\{p(w|e_i)\}$ by the typical way: \textit{all the adjectives, adverbs, verbs and nouns} are considered in the estimator since they are the terms which express the opinions, and leave another cluster’s prior as empty.

This approach has one limitation that it does not address the sentiment meaning. Look at the following two sentences: “I took some Aspirin to treat the back pain and it works well”, “I took some Aspirin to treat the back pain, but bad effect.” They have nearly the same vocabularies to address the same topic but with opposite opinions. For such sentences with similar lexical structure, a better way to distinguish them is to detect the sentiment terms, i.e., “well” and “bad”, which are key points to express the positive opinion and negative opinion, respectively. Start with this observation, we propose another approach to build the prior estimator $\{p(w|e_i)\}$ where only positive/negative terms in e_i are considered. Since all the sentences in O_i have already been considered to have the same topic with e_i. It is more appropriate to focus on the sentiments while splitting O_i into $O_{i, sim}$ and $O_{i, opp}$.

In the experiment, we will implement each approach respectively and compare their performances.

Experiments and results

A. Data and Setup

We utilize our unique dataset which is segmented from Yahoo! Groups with Health and Wellness data. The dataset consists of 27,290 public groups and over 12,519,807 messages in total, spanning seven years and multiple topics. All the experiments run on a 4TB-disk, 4GB-RAM, and 10-core server.

We have trained an SVM-based tri-class classifier with an RBF kernel on the real data and tested it. Evaluation results\cite{29} show that our classifier can achieve 90.15\% overall accuracy as well as 93.31\% accuracy of detecting user comments (C), which indicates that our approach could successfully distinguish messages’ categories, especially user comments.

Since we are targeting personal medical information, we choose to evaluate the system with outcomes of specific drugs. The evaluation system first checks the frequency of each drug from the complete list offered in our previous work\cite{2}. Only the drugs appearing more than 1000 times are considered, since their relatively high frequency of appearance may ensure that sufficient personal messages can be processed. Finally, we carefully choose 10 drugs judged to be representative and known by physicians. Half of the drugs are Prescription - Variety Medical Conditions (Prescript-VMC) drugs: Metformin, Clonidine, Gabapentin, Clonazepam and Oxaliplatin, and five are Pain Relief or Anti-coagulation (PRAC) medications: Aspirin, Heparin, Ibuprofen, Hydrocodone and Naproxen. For each drug, we collect all the messages containing its name or synonyms, process them by our classifier and get the user comments C, split C and collect sentences D which either contain the drug name, or are next to the sentences containing the drug. These sentences D potentially represent users’ diverse opinions on the drug.

We were aware that a more straightforward approach is to compare Prescription drugs with over-the-counter (OTC) drugs. However, OTC drugs tend to contain more noisy data and we noticed that, after pre-processing, many OTC drugs simply do not have enough information on this forum of proper length and diversity for our evaluation purpose. In this case, we set two groups as Prescript-VMC drugs with different specific treatments, and PRAC with more general treatments, such as some OTC drugs (Aspirin, Naproxen, Ibuprofen) as well as drugs with similar treatments (Hydrocodone and Heparin).

Due to the uniqueness of our data source – Yahoo! Groups, it is difficult to apply the traditional evaluation approaches by comparing to a gold standard like TREC medical informatics\cite{20}. Thus, a comprehensive evaluation system which contains a large-scale of professional-labeled sentences as our gold standard should be built and applied.

B. Annotation Framework

We have built an interactive web-based database system to support the evaluation process. 500 comment units (i.e., sentences) are randomly generated for each drug and stored in the database (Note, for some drugs such as Naproxen, the total number of available comment units is slightly more than 500). For a specific drug, the professional evaluation judge needs to become familiar with the pre-defined expert comments (8-10 per drug), each of which is associated with a given tag, and then enter the actual annotation. Each time one comment unit d is given together with its context in the actual personal message. The judge needs to understand the meaning of d and assign it to the most suitable cluster (recognized by the tag of the corresponding expert opinion) it belongs to, or to “other” cluster if no prior expert opinion matches. After that, the judge is also asked to determine whether d shows similar or opposite opinion with the chosen expert’s. The annotation of one comment unit is then finished and the result will be stored in the database. Figure 2 simplifies the interface for the annotation process.

Similar to Blake’s work\cite{21}, we design a two-step annotation process. The purpose of the first step, a pilot study, is to validate the design of annotation process, including the instruction and defined categories, is easy to understand...
and unambiguous for human annotators. If the pilot study shows there is no large variance of understanding about the annotation process among the annotators, we will proceed to the main study to complete the actual annotation.

Pilot study: In this experiment, three graduate students (majors are computer science, nutrition and bioinformatics) and one medical school student were enrolled. We assigned each of them 100 identical sentences (50 for Prescript-VMC and 50 for PRAC, randomly generated, covering all common clusters) and they labeled the sentences independently following the instructions. Then we collect their annotations and test the inter-rater agreement by using Fleiss’ kappa\[^{[22]}\]. Fleiss’ kappa is widely used for assessing the reliability of agreement between a fixed number of judges when assigning categorical ratings to a number of items or classifying items.

From computation, the four judges’ kappa-value reaches 0.84. According to the interpretation of the kappa statistic\[^{[23]}\], this result shows almost-perfect agreement among the judges, which proves that our annotation process is designed with minimum ambiguity.

Main study: To reach our initial goal, a gold standard should be made by professional annotators upon all the sentences. In the main study, we invited 10 medical school students who are experienced, and familiar with information about drugs and treatments, among other qualifications to develop our gold standard. For time and quality concern, it is impossible to ask one judge to label all the sentences so we randomly split the whole annotation task to 10 judges. To test the inter-judge reliability, we repeated the process of pilot study – assigning them 50 identical sentences, which are randomly selected from the sentence pool and cover all common clusters. The Fleiss’ kappa value reaches 0.81, which is considered almost perfect agreement.

The above results indicate that there is no significant variance among all the annotators, and prove that, by comprehending the task instruction, our judges are well-trained enough to provide generally consistent gold standard. Therefore, we could confidently apply the gold standard to evaluate our clustering results. The whole annotation process lasted half a month and a random follow-up check was executed by two other medical school students afterward. The output of such well-designed and professional-enrolled annotation framework is good enough to become the gold standard of our integrated system.

C. Clustering Results and Analysis

Now we have the set of comment units D for each drug, as well as the expert comments E extracted from PubMed Health database of U.S. National Library of Medicine. The number of expert comments for each drug is based on the content of the description in the database. Thus it varies from 8 to 10 for different drugs. According to the semi-supervised PLSA model introduced before, we assign each comment unit to the suitable cluster with prior expert knowledge or “other outcome” cluster without prior knowledge and compare the results to the gold standard data.

To measure the quality of our clustering results, we utilize the following measurements: accuracy, precision, recall and F-score, which are defined by:

\[
\text{Accuracy} = \frac{\# \text{of correctly clustered sentences}}{\# \text{of total sentences}} \quad (3)
\]
\[
\text{Precision} = \frac{\# \text{of correctly clustered “expert” sentences}}{\# \text{of total “expert” sentences retrieved}} \quad (4)
\]
\[
\text{Recall} = \frac{\# \text{of correctly clustered “expert” sentences}}{\# \text{of total “expert” sentences in gold standard}} \quad (5)
\]
\[
\text{F-score} = 2 \cdot \text{Precision} \cdot \text{Recall} / (\text{Precision} + \text{Recall}) \quad (6)
\]
In Formula 4 and 5, “expert sentence” means the sentence which is assigned into a cluster associated with one expert opinion \((O_1, \ldots, O_{m-1})\), regardless of annotated or auto-retrieved. In other words, the measurements precision, recall and F-score ignore the potential effect by “other opinion” cluster \((O_m)\). Note, our measurements only evaluate the correctness of clusters, not the correctness of the sentences though “incorrect” user comments do exist.

<table>
<thead>
<tr>
<th>Drug</th>
<th>Accuracy</th>
<th>Precision</th>
<th>Recall</th>
<th>F-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metformin</td>
<td>0.675</td>
<td>0.706</td>
<td>0.661</td>
<td>0.683</td>
</tr>
<tr>
<td>Clonidine</td>
<td>0.705</td>
<td>0.783</td>
<td>0.696</td>
<td>0.737</td>
</tr>
<tr>
<td>Gabapentin</td>
<td>0.665</td>
<td>0.669</td>
<td>0.663</td>
<td>0.680</td>
</tr>
<tr>
<td>Clonazepam</td>
<td>0.770</td>
<td>0.766</td>
<td>0.740</td>
<td>0.753</td>
</tr>
<tr>
<td>Oxaliplatin</td>
<td>0.655</td>
<td>0.709</td>
<td>0.653</td>
<td>0.680</td>
</tr>
<tr>
<td>Prescript-VMC (standard deviation)</td>
<td>0.694 (0.05)</td>
<td>0.726 (0.05)</td>
<td>0.683 (0.04)</td>
<td>0.707 (0.04)</td>
</tr>
<tr>
<td>Aspirin</td>
<td>0.725</td>
<td>0.768</td>
<td>0.708</td>
<td>0.737</td>
</tr>
<tr>
<td>Heparin</td>
<td>0.580</td>
<td>0.635</td>
<td>0.563</td>
<td>0.597</td>
</tr>
<tr>
<td>Ibuprofen</td>
<td>0.600</td>
<td>0.634</td>
<td>0.586</td>
<td>0.609</td>
</tr>
<tr>
<td>Hydrocodone</td>
<td>0.620</td>
<td>0.665</td>
<td>0.616</td>
<td>0.640</td>
</tr>
<tr>
<td>Naproxen</td>
<td>0.575</td>
<td>0.591</td>
<td>0.569</td>
<td>0.580</td>
</tr>
<tr>
<td>PRAC (standard deviation)</td>
<td>0.620 (0.06)</td>
<td>0.659 (0.06)</td>
<td>0.608 (0.05)</td>
<td>0.632 (0.06)</td>
</tr>
<tr>
<td>Overall</td>
<td>0.657</td>
<td>0.693</td>
<td>0.646</td>
<td>0.670</td>
</tr>
</tbody>
</table>

Table 2: The performance of the clustering result for all the drugs

Table 2 shows the performance of the clustering result by each drug, each category (prescript-VMC or PRAC) and overall. We can observe the following facts:

- Our semi-supervised PLSA model can achieve a relatively high performance of clustering. *i.e.*, the overall accuracy is 0.657 and the overall F-score is 0.670, considering the large number of clusters (9 to 11 per drug).

- Our result also shows that F-score is higher than the corresponding accuracy in all cases. The paired t-test\(^{[24]}\) between F-score and accuracy for the 10 drugs is also significant \((p\text{-value} < 0.05)\). It indicates that cluster with prior knowledge could effectively improve the performance compared to that of no prior knowledge.

- Compared with PRAC medications, Prescript-VMC drugs perform better in all cases. *i.e.*, accuracy: \(0.694\ v.s.\ 0.620\), F-score: \(0.707\ v.s.\ 0.632\), etc. We also conduct t-tests between PRAC and Prescript-VMC for each of the measurements. It shows, compared to PRAC, the recall and F-score of Prescript-VMC are significantly higher\((p\text{-value} < 0.05)\) and the accuracy\((p\text{-value} = 0.06)\) and recall\((p\text{-value} = 0.10)\) are marginally significantly higher. The results further confirm our conclusion that the clustering on Prescript-VMC outperforms that of PRAC. This makes sense since people can relatively easily describe the outcome of Prescript-VMC drugs since they may have more specific treatments, more strict usage and easier-described side effects.

- Some interesting phenomena: among all the Prescript-VMC drugs, Oxaliplatin, a cancer chemotherapy drug, is probably the most uncommon one since patients are not likely to know it unless they are facing colorectal cancer. In contrast, among all the PRAC, Aspirin is the most popular one since it is a well-known pain-relief treatments, more strict usage and easier-described side effects.

Also for all the correctly clustered “expert sentences”, we split each group \(O_i\) into two sub-groups \(O_{i,\text{sim}}\ – showing the similar opinion with the expert’s \(e_i\), and \(O_{i,\text{opp}}\ – showing the opposite opinion. Two different strategies to form the prior estimator \(\{p(w|e_i)\}\) are applied and compared. Table 3 shows the accuracy of two approaches compared to the gold standard. Approach 1 refers to that all meaningful terms are considered while Approach 2 refers to that only sentiment terms are considered. We utilize the technique and open source introduced in Hu and Liu’s sentiment analysis work\(^{[25]}\).

From Table 3 we observe that both of the approaches reach a high accuracy to determine the similar or opposite opinion (overall accuracies are above 0.80), which indicates that semi-supervised PLSA model can successfully solve such problem. Furthermore, compared to the traditional way to build estimator (Approach 1), the novel way where sentiment analysis is highly addressed (Approach 2) performs better across Prescript-VMC, PRAC, and overall case.

<table>
<thead>
<tr>
<th></th>
<th>Approach 1</th>
<th>Approach 2</th>
<th>Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prescript-VMC</td>
<td>0.820</td>
<td>0.831</td>
<td>+1.4%</td>
</tr>
<tr>
<td>PRAC</td>
<td>0.792</td>
<td>0.811</td>
<td>+2.4%</td>
</tr>
<tr>
<td>Overall</td>
<td>0.806</td>
<td>0.821</td>
<td>+1.9%</td>
</tr>
</tbody>
</table>

Table 3: The performance of distinguishing \(O_{i,\text{sim}}\) and \(O_{i,\text{opp}}\).
D. Clustering System for Drug Outcomes

Interface: Our prototype system is able to provide clustered and integrated drug information from personal health messages to enable examination through a user-friendly interface, whose composite format for the entire session is shown in Figure 3. Users can choose the specific drug and outcome that they are interested in, and the system will respond to the request by displaying the topic word distribution, the corresponding expert comment and all the comment units which belong to this outcome. Each comment unit is labeled by “similar” or “opposite” and users can also click the link of the corresponding PID to read its complete context.

Example of Clonazepam: Table 5 shows the outcome integration results with expert comments, for the drug Clonazepam, which achieves the best performance out of 10 drugs. (accuracy: 0.770, F-score: 0.753). In the table, “Topic model” column shows the most common terms in this outcome as well as its probability. From this column we expect users could easily conceptualize the particular cluster at a glance. The third and fourth column show the number of “Similar Opinions” and “Opposite Opinions” for the corresponding outcome (denoted by s), respectively, as well as one sample personal sentence (for the space limit).

From Table 5, we build 8 clusters for Clonazepam, where each of them focuses on one meaningful semantic outcome, guided by an expert comment. For example, Outcome ID 1 talks about the main treatment of Clonazepam – to treat seizures, which we know from the topic model and the expert comment e1. 59 comments express the similar/same opinion, while other 16 show different/opposite opinions on the same topic. From each row, we could easily understand the general user experience and how common this experience are among users regarding the particular outcome while taking Clonazepam: do they feel about this drug? Do they agree or disagree with the experts’ opinion? Similarly, the rest outcomes such as side effects, dosage are shown in the following rows.

Such information is scattered in the huge amount of messages and impossible to integrate by hand. With our system, users can effectively re-organize and integrate the drug-based information in a well-readable way.

New discovery of “other outcome”: Note for each drug, we also generate an additional cluster O_m, i.e., “other outcome” which includes information mentioned by online users but not in standard description from expert comments. Table 4 shows some sentences (31 sentences in total, of which 8 relate to mouth burning) in O_m for Clonazepam. We examine this cluster for each drug and find some interesting opinions. e.g., 34 comments report that Metformin is also used to treat obesity. For Clonazepam, 8 sentences show that Clonazepam may help to relief stomatodynia (burning mouth syndrome). For Aspirin, 5 sentences say that taking Aspirin causes eye problem, such as bursting eye vessels. For Heparin, 6 sentences show the concern that Heparin may cause severe bleeding to death. etc.

Although such “other outcomes” are not mentioned in expert comments, i.e., not recorded as standard outcome of the drug, they are discussed by actual users. In fact, formal medical literatures have mentioned each of the above additional outcomes – Metformin, Clonazepam, Aspirin and Heparin. Therefore, our system can effectively discover such “new outcome” from the clinical experiences as reported directly by the patients, which will provide supplemental information for the drug’s standard description.

E. Advantages and limitations of model

One advantage of our system over other simple statistic methods relies on its capacity of capturing the coherence of terms (e.g., appositive, synonym). The PLSA model is able to detect such connection between two comments which contain relevant, but not identical information since they share the similar contexts. Take one of the Clonazepam’s outcomes (OID 4) as an example, the expert comment is “Follow ... and ask your doctor or pharmacist to explain any part you do not understand.” The 18 similar sentences include not only “I would like to discuss with my Doctor.”

6 Currently the system only works on the 10 drugs used for the evaluation task.
which capture the word “doctor” exactly, but also “I first tried Klonopin prescribed by Dr. Cheney”, and “you need to be monitored by a physician”, which capture the words “dr”, “physician”.

<table>
<thead>
<tr>
<th>ID</th>
<th>Topic model</th>
<th>Expert comment</th>
<th>Similar Opinions</th>
<th>Opposite Opinions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>seizures(0.10), panic(0.09), attack(0.07), seizure(0.06), brain(0.05), activity(0.02)</td>
<td>Clonazepam is used alone or in combination with other medications to control certain types of seizures. It is also used to relieve panic attacks and works by decreasing abnormal electrical activity in the brain.</td>
<td>[s=59] She has only had a handful of seizures since then, Klonopin seems to control her seizures well.</td>
<td>[s=16] Shy, Klonopin did not seem to contribute to my brain fog.</td>
</tr>
<tr>
<td>2</td>
<td>disorder(0.05), restless(0.04), plmd(0.03), dystonia(0.03), movement(0.02), mental(0.02)</td>
<td>Clonazepam is also used to treat symptoms of akathisia that may occur as a side effect of treatment with anti-psychotic medications and to treat PLMD, dystonia, and acute catatonic reactions.</td>
<td>[s=26] Klonopin works really well for Periodic Limb Movement Disorder, or any other med in the benzo class.</td>
<td>[s=12] Tried clonazepam for stress induced issues but it was too strong for me.</td>
</tr>
<tr>
<td>3</td>
<td>times(0.09), mg(0.08), daily(0.07), three(0.06), bedtime(0.04), tablet(0.03)</td>
<td>Clonazepam comes as a tablet to take by mouth. It usually is taken one to three times a day with or without food. Take clonazepam at around the same time(s) every day.</td>
<td>[s=33] Zach has been on Klonopin (Clonazepam) .5mg three times a day for years.</td>
<td>[s=9] Please do not take more than 8 Klonopin tablets a month</td>
</tr>
<tr>
<td>4</td>
<td>doctor(0.03), ask(0.02), prescription(0.02), explain(0.01), pharmacist(0.01)</td>
<td>Follow the directions on your prescription label carefully, and ask your doctor or pharmacist to explain any part you do not understand.</td>
<td>[s=18] Patricia, Klonopin is hands down the best medication to take, but you need to be monitored by a physician.</td>
<td>[s=6] I know they can’t prescribe the klonopin but a recommendation would be helpful.</td>
</tr>
<tr>
<td>5</td>
<td>allergic(0.07), pregnant(0.06), myoclonus(0.05), pregnancy(0.02)</td>
<td>Before taking clonazepam, tell your doctor if you are allergic to clonazepam, tell your doctor if you are pregnant.</td>
<td>[s=24] Most anti-seizure meds aren’t allowed to be taken while you are pregnant, like Klonopin.</td>
<td>[s=20] Sydnie has never had any allergy from the klonopin so we have been pretty pleased with it!</td>
</tr>
<tr>
<td>6</td>
<td>anxiety(0.21), anti(0.04), depression(0.03), mood(0.02), emotional(0.02), suicidal(0.02)</td>
<td>Report any new or worsening symptoms such as: mood or behavior changes, or if you feel agitated, irritable, hostile, aggressive, or have thoughts about suicide or hurting yourself.</td>
<td>[s=55] I have been worried about taking the Klonopin for the anxiety and sleeplessness because I have this history of depression, and it really brings you down.</td>
<td>[s=26] I just started taking Klonopin a couple of months ago for my anxiety.</td>
</tr>
<tr>
<td>7</td>
<td>tired(0.05), redness(0.04), rash(0.03), eye(0.02), breathing(0.02), liver(0.02)</td>
<td>Call your doctor if you have a serious side effect such as: tiredness, shallow breathing, unusual eye movements; stomach problem, liver or kidney problem, redness, abnormal weight.</td>
<td>[s=23] The klonopin just made me tired and that kind of made me feel more out of control.</td>
<td>[s=8] Only on the left side, and it is more like a rash than a redness</td>
</tr>
<tr>
<td>8</td>
<td>addiction(0.14), abuse(0.13), addictive(0.1), hhighly(0.02), pregnancy(0.02)</td>
<td>Clonazepam may cause someone to succumb to drug abuse or addiction.</td>
<td>[s=31] Unfortunately, Klonopin is a very addictive drug.</td>
<td>[s=9] Klonopin is a little addictive, but does help when you need it</td>
</tr>
</tbody>
</table>

Table 5: The outcome results for Clonazepam with expert comments

Another advantage of the model is the flexibility of setting expert comments. Users can follow our example, i.e., extracting E from a professional drug database, or define and input the expert comments by themselves as prior knowledge of PLSA model. The clustering results will vary according to different expert comments. This customizable design could cater to various information needs of different users.

PLSA model requires to manually set a fixed number of clusters and lacks a way to dynamically determine the proper number of clusters. We will try to solve the problem in the future work. Furthermore, our model can analyze each independent drug effectively by embedding its specific expert comments. However, a unified expert-comment setting strategy should be designed and implemented while extending our system to arbitrary drugs or even treatments.

Conclusion and Future Work

In this paper, we describe a useful system we built to filter, organize and integrate drug-based medical information. SVM classifier, PLSA model and sentiment analysis techniques are applied in the system. We design a large-scale and professional-quality annotation framework, the output of which is good enough to be the gold standard to test the performance of the model. The experiment results with high accuracy and F-score show that our system can successfully filter the online medical information in a meaningful way. Users can request and search the well-organized personal opinions on different types of drugs via our prototype system, which could satisfy not only physicians’, but also patients’ information need.

In the future, we plan to explore and analyze different online healthcare resources, such as twitter⁷ – a more general social network where people discuss their health problem in a casual way, or MedHelp⁸ – a more professional medical forum providing well documented user demographic information. We expect to compare the up-to-date contents and language features across different online medical discussion platforms.

Recently, Comparative Effectiveness Research (CER) has become a new paradigm to analyze and compare different interventions and strategies in clinical trials, e.g., CER in chronic obstructive pulmonary disease. Starting from our work, CER can be conducted to compare the harms or benefits of different drugs or treatments (e.g., Aspirin is more effective than Ibuprofen to treat migraine headache), by exploring the integrated personal messages.

From a system perspective, we will design and implement a flexible expert-comment setting strategy which offers the choice of unified standard from expert resource or patient-oriented prior knowledge. Building upon the clustering engine described in this paper, a wide range of drugs and treatments can be automatically analyzed from patient-specified personal health messages, and an effective interactive system can be built upon their integrated results.

⁷http://www.twitter.com
⁸http://www.medhelp.org/forums/list/
Acknowledgements
Funding was provided by United States Department of Agriculture (USDA) National Research Initiative (NRI), grant 2009 – 35302 – 05285. Facilities were also provided by the Institute for Genomic Biology at UIUC.

References